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1. Introduction 

Waste heat conversion is an area of significant interest to the Army, as >50% of the input energy 
to an internal combustion engine can be lost as heat.  Should a fraction of this energy be 
recovered, significant benefits in power output and system efficiency could be realized.  In their 
usual form, thermoelectric (TE) devices are fabricated from “bulk” materials that are synthesized 
by freezing molten boules forming ingots.  Those ingots proceed through serial processes 
including saw-cut dicing, metallization, and soldering on the path towards a TE device.  While 
bulk device fabrication is well-known and mature, miniaturizing that process for micromachined 
TE devices for small and/or complex systems becomes difficult given their limited size and serial 
manufacturing techniques.  In contrast, micromachined TE generators could take advantage of 
the huge infrastructure that exists for parallel manufacturing of silicon-based microsystems to 
improve device yield, system performance, integration, and form factor.  Applications such as 
unattended ground sensors, thermal imagers, or clandestine tagging, tracking, and locating 
(cTTL) are just some of the possible areas where this technology could be beneficial. 

Industry demonstrations of thin-film TE devices include output powers of >14 W from a 4.6 cm2 
device at ∆T~100 °C, with reported efficiencies of 5–10% (1).  However, TE materials are 
typically grown on expensive, exotic substrates like barium fluoride (BaF) or gallium arsenide 
(GaAs), neither of which is scalable compared to silicon, nor do they offer the ability to integrate 
electronic devices and/or sensors as silicon does.  Thus, the goal of this research is to combine 
three areas of active research within the Microsystem thrust of the U.S. Army Research 
Laboratory (ARL) (TE materials, micro-electro-mechanical systems (MEMS) sensors/actuators, 
and thermal management) into a single-chip system similar to that shown conceptually in figure 
1.  This report details the technical progress and limitations of directly patterning TE thin-films 
on silicon for improved form factor, reduced system complexity, and superior thermal interfaces.  
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Figure 1.  Conceptual schematic of a TE generator on silicon, where heat exchangers can be micromachined in 
silicon and integrated with MEMS sensors/actuators onto a single chip. 

2. Sample Preparation 

In general, when selecting a material for a TE device, one desires three characteristics:  (1) high 
electrical conductivity to minimize electrical resistance losses, (2) low thermal conductivity to 
maximize the temperature gradient across the material, and (3) a high Seebeck coefficient to 
maximize the thermal voltage.  These properties are typically expressed as the so-called “figure 
of merit (Z)” (2): 

 
κ
σα ⋅

=
2

Z  (1) 

where α is the Seebeck coefficient (V/K), σ is electrical conductivity (Ω-1m-1), and κ is thermal 
conductivity (Wm-1K-1).  The figure of merit is plotted as a function of temperature in figure 2 
(2).  Given that many energy scavenging applications are in the near-room temperature regime 
(0–150 °C), bismuth telluride (Bi2Te3)-based materials offer the highest potential performance.  
Other efforts on lead-telluride (PbTe)-based materials for higher temperature applications are 
being pursued through a collaboration with the University of Florida (3). 
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Figure 2.  Figure of merit (Z) as a function of temperature for a variety of materials; for 
room temperature applications, Bi2Te3-based compounds are the obvious 
choice (2). 

The samples used in this research started as 4-in <100> silicon wafers.  A 1 μm thermal oxide 
was grown over the entire wafer to electrically insulate the TE device material from the silicon.  
Various metal pads were then defined using a standard lithography process (AZ5214) and lift-off 
in acetone (50 °C for 2 h).  These patterned metal pads will eventually form bottom side 
interconnects between TE posts.  After substrate cleaning in an RCA-1 bath to remove organic 
residue, the blanket Bi2Te3 films were grown using solid-source molecular beam epitaxy (MBE).  
As deposited, the films were undoped, and growth rates of ~1 μm/h were demonstrated.  Thus 
far, films as thick as 9 μm have been achieved (reactor time limited), although there appears to 
be no upper limit to the thickness and thicker films are planned for future devices.  After film 
growth, the sample is coated with a thin photoresist layer to protect the Bi2Te3 during a dicing 
step, in which 15 by 15 mm dies are separated for processing.  The protective photoresist layer is 
removed in a PRS-3000 photoresist stripper for 2 min at 80 °C. 
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3. Photolithography 

Before etching experiments could be undertaken, a photolithography step was used to create the 
appropriate pattern.  Standard lithography recipes were adapted for this purpose.  The best results 
were obtained using the following sequence:  (1) spin coat AZ5214e at 1200 rpm for 30 s, 
(2) soft bake at 110 °C for 60 s, (3) contact exposure for 3.3 s, (4) reverse-image bake at120 °C 
for 30 s, (5) flood exposure for 5.5 s, and (6) develop for 60 s in AZ312MIF 1:1 DI.  This 
resulted in a 2.8 μm thick photoresist layer in which features as small as 4 μm square were 
consistently defined.  In general, the exposure times were the only parameters requiring 
significant attention, a fact largely attributed to the reduced reflectivity and increased light 
absorption of the polycrystalline Bi2Te3 surface compared to polished single crystal silicon.  

The primary problem encountered during lithography was delamination during the development 
step.  As shown in figure 3, on/around areas with pre-patterned metal pads, the Bi2Te3 adhered, 
while in open areas with only bare SiO2 the film delaminated, likely from the lack of any 
chemical bonding to the surface.  While figure 3 is an extreme case, such delamination is of little 
concern since most implementations will require metal underneath the Bi2Te3 post to serve as an 
electrical interconnect.  In the future, the ability to grow single crystal Bi2Te3 directly on single 
crystal silicon may be investigated as an alternative means for improving film adhesion and 
doping at the expense of slightly more complicated system design. 
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Figure 3.  Optical micrograph of a Bi2Te3 sample after lithography—the patterned photoresist squares are nicely 
defined; however, the development step has caused significant delamination of Bi2Te3 where metal is not 
present to anchor it down. 
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4. Wet Chemical Etching 

Wet chemical etching was first pursued due to its simplicity and availability.  According to 
Dilberto et al. (4), a combination of hydrogen peroxide (H2O2), hydrochloric acid (HCl), and  
de-ionized water (DI) has proven effective at etching Bi2Te3-based compounds.  However, 
particular attention should be given to the compatibility of wet chemical etchants with other 
materials on the wafer.  In this case, the H2O2:HCl:DI mix is essentially a diluted form of the 
standard RCA-2 clean, which would etch both the Bi2Te3 device material as well as the metal 
pad.  As an alternative, Shafai and Brett (5) used a diluted combination of HCl and nitric acid 
(HNO3), a variant of the common “Aqua Regia.”  Since we desire to use photoresist as the 
masking material for process flexibility, we used a diluted version of Aqua Regia (3 HCl:1 
HNO3:2 DI) that according to Williams et al. (6) should not attack photoresist appreciably.  

Vertical etch rates of ~0.5μm/min were achieved; however, the scanning electron microscope 
(SEM) images shown in figure 4 highlight that the horizontal undercut is >5 times the thickness.  
This fact indicates that there may be more exposed surface area in contact with the etchant 
because of, say, grain boundary effects and open voids within the material that causes the 
relatively fast lateral etch rate.  While the grain structure and the presence of voids within the 
material can be improved in future growth studies, the best scenario for wet etching a 
polycrystalline material is still a 1:1 ratio of vertical to horizontal etch rates.  Figure 4(a) also 
shows some residue that remained after the wet etch was performed.  Energy-dispersive x-ray 
spectroscopy (EDX) analysis indicates this to be a carbon-based residue (7), likely from partial 
etching of the photoresist during immersion in the solution.  Further dilution of the etchants 
could mitigate this effect (at the cost of etch rate), or the migration to a metal mask could be 
investigated.  

Thus, while the wet approach offers reasonable etch rates (>0.5μm/min) and requires very simple 
bench-top equipment, wet patterning must be limited to low aspect ratio structures.  Since TE 
generators perform most efficiently at high aspect ratios, an alternative technique is necessary to 
pattern smaller features. 
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Figure 4.  SEMs of wet etched Bi2Te3, showing (a) the large horizontal mask undercut and resulting residue that is 
quite evident and (b) a close-up of the resulting vertical sidewall. 

5. Dry Plasma Etching 

Dry plasma etching should provide the desired vertical etch characteristics; however, achieving 
significant etch rates and good selectivity to a photoresist mask is typically challenging.  In 
addition, the capital equipment required is both complicated and expensive.  For this work, we 
used an inductively coupled plasma (ICP) etch tool that allows independent tuning of the plasma 
density and ion energy.  Literature reports show some success using common etch gasses (such 
as Ar, O2, CH4, etc.) with etch rates of ~60 nm/min (4).  Combinations of CH4-H2 are often used 
for etching III-V devices in the same ICP chamber, and were therefore considered a good starting 
point.  Each 15 by 15 mm die was mounted on bare 4-in silicon carrier wafers for handling by 
the system. 

Using established recipes as a guideline, the initial experiments were focused on understanding 
the basic dependence of the Bi2Te3 etch rates in different gas mixtures and pressures.  For the gas 
mixture, an initial combination of 10 sccm of CH4, H2, and Ar was compared to 15 sccm CH4, 5 
sccm H2, and 15 sccm of Ar.  In the latter mixture, it was expected that the increase in heavy Ar+ 
molecules bombarding the surface would promote ion-assisted etching, while an increase in CHx 
radicals would increase chemical etching, leading to a dramatic increase in etch rate.  The two 
pressure set-points were intended to investigate the tradeoffs between available etch species, 
average ion energy, and possible re-deposition of volatiles, all of which are known to affect the 
etch rate.  
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As shown in table 1, the initial recipe resulted in an etch rate of 0.22 μm/min, while changing the 
pressure and gas mixture successfully increased the etch rate to 0.66 μm/min, with pressure 
change having a greater influence than chemistry.  This relatively high etch rate is important, 
because it represents a tenfold improvement over that reported in Dilberto et al. (4) and makes 
etching thick films (>10 μm) possible in realistic time.  However, during this etch, we observed a 
selectivity of <5:1, meaning that the photoresist mask thickness must increase dramatically to 
etch thicker films, which in turn will reduce the resolution achievable in the resist.  Therefore, a 
second round of experiments was devised to investigate improving the selectivity—a notoriously 
difficult property to control given that, for example, a change in ion energy effects the etch rates 
of both the Bi2Te3 and photoresist.  We chose to vary the electrode power and pressure in an 
attempt to minimize ion bombardment on the photoresist while maintaining enough ion assisted 
etching of the Bi2Te3 to realize a significant overall etch rate.  The gas combination of 15/5/15 
was employed for all cases and the results are shown in table 2.  For the case of higher electrode 
power (100 W), the low pressure had a slightly higher selectivity, but a vastly lower etch rate.  
For the lower electrode power (50 W), the etch rate decreased only slightly while the selectivity 
effectively doubled.  Thus, a final etch rate >0.5 μm/min with selectivity well above 10:1 was 
achieved through simple changes in gas mixture, electrode power, and pressure.  The initial and 
final etch parameters are shown in table 3. 

Table 1.  Measured etch rate (μm/min) as a function of chamber 
pressure and gas mixture (all at 100 W electrode power). 

Pressure 
(mTorr) 

Gas Mix 
CH4/H2/Ar 

(sccm) 10 20 
10/10/10 0.22 0.47 
15/5/15 0.28 0.66 

Table 2.  Measured etch rates and selectivity to photoresist 
(PR) as a function of chamber pressure and electrode 
power (all using 15/5/15sccm of CH4/H2/Ar). 
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Table 3.  Initial and final etch recipe parameters. 

 Coil Power 
(W) 

Electrode 
Power 

(W) 

Chamber 
Pressure 
(mTorr) 

Gas Flow 
(sccm) 

    CH4 H2 Ar 
Initial 600 100 10 10 10 10 
Final 600 50 20 15 5 15 

 
SEM images of prototype TE posts on patterned metal features are shown in figure 5.  Note the 
lack of residue and vertical sidewall profiles achieved, establishing this etching technique as a 
viable tool for fabricating micromachined TE legs.  The developed techniques should enable 
scaling of similar structures to even thicker films, enabling improved performance of waste heat 
recovery systems. 

 

Figure 5.  SEMs of etched Bi2Te3 posts on pre-patterned metal pads—note lack of residue on metal as well as the 
verticality of the sidewalls. 
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6. Conclusion 

This research has demonstrated that Bi2Te3-based TE materials and devices can be monolithically 
integrated with silicon-based materials and MEMS most efficiently provided there is an 
“adherent” on the SiO2 surface.  For this work, a base metal is highly successful and necessary 
for eventual device fabrication anyway.  These Bi2Te3 TE thin-films can be reliably patterned 
using the existing, large technology infrastructure available within silicon processing facilities.  
Experiments have shown that high etch rates (>0.5 μm/min) and photoresist selectivity (>10:1) 
can be achieved through straight-forward process modifications.  Future work will concentrate 
on using these fabrication techniques to create characterization structures in order to measure and 
optimize the TE properties of these films. 
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